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Abstract

In this paper, we study the deterministic blind identification of multiple channel state-space models having a common unknown
input using measured output signals that are perturbed by additive white noise sequences. Different from traditional blind
identification problems, the considered system is an autoregressive system rather than an FIR system; hence, the concerned
identification problem is more challenging but possibly having a wider scope of application. Two blind identification methods
are presented for multi-channel autoregressive systems. A cross-relation identification method is developed by exploiting the
mutual references among different channels. It requires at least three channel systems with square and stably invertible transfer
matrices. Moreover, a general subspace identification method is developed for which two channel systems are sufficient for the
blind identification; however, it requires the additive noises to have identical variances and the transfer matrices having no
transmission zeros. Finally, numerical simulations are carried out to demonstrate the performance of the proposed identification
algorithms.
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1 Introduction

Blind system identification is to estimate transfer func-
tions using only output observations with some a pri-
ori knowledge of the system model and system input
[7, 19, 27, 28]. Since only system outputs are required
for the identification problems, it has a broad range of
potential applications. For instance, the identification
of networked systems with unknown disturbed signals
[15, 23] and the blind deblurring for the biomedical or
optical imaging [4, 25].

This paper deals with the blind identification of mul-
tivariate or multi-input-multi-output (MIMO) autore-
gressive systems for which the system inputs are deter-
ministic but unknown. Conventional blind MIMO sys-
tem identification requires to identify the transfer ma-
trix and separate multiple sources. Here, we only concern
the transfer matrix estimation part, so there may exist
a matrix ambiguity for the identification result [1, 11].
To date, most the existing deterministic blind MIMO
system identification studies are based on FIR settings
[17, 1, 11], and limited work has been done on ARMA
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systems [29, 18]. In the present paper, we shall investi-
gate the blind identification of state-space represented
MIMO systems.

The blind deconvolution of dynamical systems using
state-space approaches was reviewed in [29], where the
involved cost functions, such as maximum entropy, min-
imum mutual information and maximum high-order cu-
mulant, are non-convex. Due to the non-convex proper-
ty, the gradient-descent type of optimization algorithms
may get stuck in local optima. In this paper, we use
ideas from subspace identification [16, 21] to avoid the
above mentioned non-convex optimization problems, s-
ince the subspace methods do not need to parameterize
the model but using reliable linear algebraic calculations
such as QR and SVD decompositions.

In this paper, we present two blind identification meth-
ods for multi-channel systems in state-space forms. A
cross-relation identification method is developed for sys-
tems with square and stably invertible transfer matri-
ces. The blind identification problem for this type of
systems can be recasted into a classic errors-in-variables
identification problem, which can then be solved us-
ing classic subspace identification methods [16, 21]. One
advantage of the cross-relation method is that the in-
volved measurement noises can be spatially correlat-
ed and may not have identical variances. Moreover, a
subspace-based identification algorithm is developed for
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the multi-channel systems with tall (possibly not stably
invertible) transfer matrices by exploiting zero and pole
diversities of the multiple channels. For these two blind
identification methods, their associated blind identifia-
bility conditions are provided.

The numerator and denominator polynomial matrices of
an ARMA system are usually coupled together, so the
associated identification problem is challenging. To deal
with this identification problem, prior knowledge of the
system input has been adopted in traditional identifi-
cation methods, such as piecewise-smooth input [2, 24],
white-noise input [20, 26, 27], periodically modulated in-
put [8] and finite-alphabetic input [18]. In the proposed
subspace identification methods, we do not use any pri-
or knowledge of the system input except its persistent
excitation property. The proposed identification meth-
ods are derived based on the fact that: a square transfer
matrix generically possesses transmission zeros, while an
augmented transfer matrix constructed by stacking two
square transfer matrices generically possesses no trans-
mission zeros.

The rest of the paper is organized as follows. Section
2 describes the multivariate blind system identification
problem. Section 3 gives some preliminaries on the i-
dentifiability of two-channel autoregressive systems.
Section 4 provides a method for blindly estimating the
characteristic polynomials of multiple channel systems.
This characteristic-polynomial estimation method will
be used in the two blind identification algorithms that
are developed in Section 5. Section 6 shows two simula-
tion examples, followed by the conclusions in Section 7.

The following notation is adopted throughout the paper.
E(·) denotes the mathematical expectation. δ(·) stands
for the Dirac delta function.H(q) represents the transfer
function of a system with impulse response h(k) in time
domain, and q−1 is the backward shift operator. The
upper case letter A denotes a matrix, and vec(A) repre-
sents the vectorization of A. The superscripts T and −1

stand for the matrix transpose and inverse, respective-
ly. ∥A∥F denotes the Frobenius norm of A. det(A) and
adj(A) represent the determinant and adjoint matrices
of A, respectively. I is the identity matrix of appropriate
dimension.

2 Problem formulation

We consider the multiple channel systems in state-space
forms as follows:

xi(k + 1) = Aixi(k) +Bis(k)

yi(k) = Cixi(k) +Dis(k) + wi(k), i = 1, · · · , L, (1)

where s(k) ∈ Rm is a common source signal, wi(k) ∈
Rp, xi(k) ∈ Rn and yi(k) ∈ Rp are respectively the

measurement noise, system state and output of the i-
th channel system, and Ai, Bi, Ci, Di are real system
matrices of appropriate dimensions.

In stating the assumptions that will be used in solving
the blind identification problem in this paper, use will
be made of the following definition.

Definition 1 The input sequence s(k) is persistently ex-
citing of order ns if and only if for any positive integer
k, there exists an integer N such that the matrix

s(k + 1) s(k + 2) · · · s(k +N)

s(k + 2) s(k + 3) · · · s(k +N + 1)
...

... . .
. ...

s(k + ns) s(k + ns + 1) · · · s(k +N + ns − 1)


has full row rank.

For the systems in (1), the following standard assump-
tions are made.

A1. The system input s(k) is persistently exciting of
any finite order.

A2. Thematrix pair (Ai, Bi) is controllable and (Ci, Ai)
is observable for i ∈ {1, · · · , L}.

A3. Ai is stable and Di has full column rank for i ∈
{1, · · · , L}.

A4. The additive white noise wi(k) is independent of
s(k) and x(0), and satisfies that

E(wi(k)w
T
j (k − τ)) = σ2δ(i− j)δ(τ) · I,

where i, j ∈ {1, · · · , L}.

Assumption A1 assures that the concerned systems can
be fully excited. Assumption A2 indicates that the con-
cerned systems in state-space forms are minimal real-
izations. It is assumed in Assumption A3 that all eigen-
values of Ai have amplitudes less than one, indicating
that the effect of the current state on the future outputs
decays along with the increase of time. In addition, the
dimension of the system output is larger than or equal
to that of the system input, namely p ≥ m.

The problem of interest is to blindly identify the system
matrices {Ai, Bi, Ci, Di} up to amatrix ambiguity based
on only the system observations {yi(k)}Li=1. It is noted
that the ”up to a matrix ambiguity” is different from
”up to a similarity transformation” which is commonly
used in state-space system identification. Suppose that
the true transfer matrix of the i-th channel is Hi(q) =
Ci(qI − Ai)

−1Bi + Di. Determination up to a matrix
ambiguity means that the estimated transfer matrix has
the form Ĥi(q) = Hi(q)Γ with Γ a non-singular matrix,
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while determination up to a similarity transformation
indicates that the estimated transfer matrix still equals
the true transfer matrix.

Generally, there are many matrix fraction descrip-
tion (MFD) forms for each single-channel system.
If Hi(q) = Ni(q)R

−1
i (q) with deg [det (Ri(q))] = n

is one MFD form of the i-th transfer matrix, then
Hi(q) = (Ni(q)C(q))

(
C−1(q)R−1

i (q)
)

for any uni-
modular matrix C(q) is another MFD form with
deg [det (Ri(q)C(q))] = n. Since C(q) can be any uni-
modular matrix, the numerator and denominator poly-
nomial matrices of Hi(q) cannot be determined up to a
constant matrix ambiguity. To cope with this problem,
in this paper, the i-th transfer matrix is represented in

the form Hi(q) = Qi(q)
pi(q)

, where pi(q) = det(qI − Ai)

is a monic characteristic polynomial and Qi(q) is a
polynomial matrix having the same size as Hi(q).

3 Preliminaries on identifiability of two channel
systems

The two-channel system can be considered as a basic
element of the multi-channel system, so its identifiability
will be investigated in this section.

Definition 2 Consider the following two-channel sys-
tem without noise effect:

y1(k) = H1(q)s(k)

y2(k) = H2(q)s(k),
(2)

where Hi(q) = Ci(qI − Ai)
−1Bi + Di for i = 1, 2.

Given the system outputs y1(k) and y2(k), the above
two-channel system is blindly identifiable if any solu-
tion {Ĥ1(q), Ĥ2(q), ŝ(k)} to equation (2), with Ĥ1(q) and

Ĥ2(q) having minimal realizations of order n, satisfies

Ĥ1(q) = H1(q)Γ

Ĥ2(q) = H2(q)Γ

ŝ(k) = Γ−1s(k)

with Γ ∈ Rm×m being a non-singular ambiguity matrix.

Denote

Hi(q) = Ci(qI −Ai)
−1Bi +Di =

Qi(q)

pi(q)
for i = 1, 2.

The two-channel system without additive noise effect
can also be written as[
y1(k)

y2(k)

]
=

 Q1(q)
p1(q)
Q2(q)
p2(q)

 s(k) =

[
Q1(q)p2(q)

Q2(q)p1(q)

]
︸ ︷︷ ︸

G(q)

s(k)

p1(q)p2(q)︸ ︷︷ ︸
u(k)

.

(3)
Let G1(q) = Q1(q)p2(q) and G2(q) = Q2(q)p1(q). The

signal u(k) = s(k)
p1(q)p2(q)

is a pseudo common source sig-

nal. As shown in equation (3), the two autoregressive
systems can be transformed to two FIR systems. To en-
sure the blind identifiability of G(q) in (3), it is neces-
sary that the polynomial matrix G(q) is irreducible [7,
Chapter 3], i.e. the matrix G(q) has full column rank for
any q ∈ C. The next theorem shows that this is not the
case for G(q) in (3).

Theorem 1 Suppose thatA1 andA2 are cyclic matrices
[9]. Let the dimension parameters m, p ≥ 2. Then, the
polynomial matrix G(q) defined in (3) is reducible even if
Assumptions A1-A3 hold and {p1(q), p2(q)} are coprime.

PROOF. By the following relations for any i ∈ {1, 2}:

(qI −Ai)
−1 =

adj(qI −Ai)

det(qI −Ai)

pi(q) = det(qI −Ai),

Qi(q) can be represented as

Qi(q) = Ciadj(qI −Ai)Bi +Dipi(q). (4)

The polynomial matrix G(q) can be written as

G(q) =

[
C1adj(qI −A1)B1p2(q) +D1p1(q)p2(q)

C2adj(qI −A2)B2p1(q) +D2p2(q)p1(q)

]
.

(5)
Let z0 be a zero of p1(q), namely p1(z0) = 0. It follows
that

G(z0) =

[
C1adj(z0I −A1)B1p2(z0)

0

]
.

In addition, it can be established that

[adj(z0I −A1)] (z0I −A1) = det(z0I −A1)I = 0. (6)

Since A1 is a cyclic matrix, z0I − A1 is rank deficient
by one [9]. It can then be derived that adj(z0I − A1)
has rank less than or equal to one, so does the matrix
C1adj(z0I − A1)B1p2(z0). When the dimension param-
eters m, p ≥ 2, it is obvious that G(z0) is rank deficient,
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namely G(q) is reducible.

Theorem 1 shows that the FIR transfer matrix G(q) in
(3) cannot be identified up to a matrix ambiguity. By
taking an insight in the structure of G(q), we can find
that the system poles of H1(q) and H2(q) are exactly
the latent roots [12] of G(q). Since the unavailability of
system poles causes the two FIR systems in (3) to be
unidentifiable, we shall investigate the identification of
the characteristic polynomials pi(q) in Section 4.

Before proceeding to the characteristic-polynomial iden-
tification, we would like to investigate the persistent ex-
citation properties of the system outputs {yi(k)}2i=1 in
(3), since they are essential for analyzing the system i-
dentifiability in the sequel.

The matrix form of (3) can be written as[
Y 1
2n+1,r,N

Y 2
2n+1,r,N

]
︸ ︷︷ ︸

Y2n+1,r,N

=

[
G1
r

G2
r

]
︸ ︷︷ ︸

Gr

U1,2n+r,N , (7)

where

Y i
2n+1,r,N =


yi(2n+ 1) · · · yi(2n+N)

... . .
. ...

yi(2n+ r) · · · yi(2n+ r +N − 1)


with the superscript i denoting the channel index, the
first subscript 2n+1 indicating the time index of the top-
left entry, the second and third subscripts r,N represent-
ing the numbers of block rows and columns, respectively.
The matrix Gi

r ∈ Rrp×(2n+r)m is defined by

Gi
r =


Gi

2n · · · Gi
0

. . .
...

. . .

Gi
2n · · · Gi

0


with the superscript i denoting the channel index, the
subscript r indicating the number of block rows, and
{Gi

j}2nj=0 being the matrix coefficients of Gi(q). In the
sequel, we assume that N ≫ r, namely Y2n+1,r,N in (7)
is a flat matrix.

The rank property of the augmented block Toeplitz ma-
trix Gr is shown in the next lemma. Here, we make use
of the following definition.

Definition 3 Them×mminors of the transfer function
H1(q) are the determinants of all m×m sub-matrices of
H1(q).

Lemma 1 Suppose that the following assumptions hold:

(1) Assumptions A1-A3 hold;
(2) H1(q) and H2(q) do not share common zeros and

poles;
(3) The poles ofHi(q) for any i ∈ {1, 2} do not coincide

with its zeros;
(4) The greatest degree of all m × m minors of Q1(q)

(or Q2(q)) equals that of

[
Q1(q)

Q2(q)

]
.

Then, for any r > 2n, the rank of Gr satifies

rank(Gr) = rm+ 2n.

Furthermore, the rank of Y2n+1,r,N in (7) satisfies

rank (Y2n+1,r,N ) = rm+ 2n.

Proof of this lemma can be found in Appendix A.

Following the above analysis of two channel systems, the
rank properties of single-channel systems will be derived
analogously. For the i-th channel with i ∈ {1, 2}, the
associated systemmodel withoutmeasurement noise can
be written as

yi(k) = Qi(q)
s(k)

pi(q)
, (8)

where s(k)
pi(q)

is regarded as a pseudo source signal.

Corollary 1 Suppose that Assumptions A1-A3 hold.
We have that:

(1) when p = m, rank
(
Y i
2n+1,r,N

)
= rm.

(2) when p > m and Hi(q) has no transmission zeros,
rank

(
Y i
2n+1,r,N

)
= rm+ n for any r > n.

The above corollary can be proven by using the same
means adopted in the proof of Lemma 1. For the sake of
brevity, the proof will not be detailed here.

According to the results of Lemma 1 and Corollary 1, we

can see that the two-channel output sequence

[
y1(k)

y2(k)

]
lacks persistent excitation whenever {Hi(q)}2i=1 are
square or tall. For a single channel with p = m, yi(k)
is persistently exciting under some mild conditions;
however, yi(k) lacks persistent excitation when p > m.

4 Blind identification of characteristic polyno-
mials

As shown in the previous section, the pole information
is crucial for the blind identification of autoregressive
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systems. In this section, we shall investigate the identi-
fication of the characteristic polynomials of two channel
systems.

Suppose thatH1(q) = L−1
1 (q)N1(q) with deg[det(L1(q))] =

n is an MFD of the first channel system. In order to
estimate the input signal from the first channel, we
need to find a left inverse of H1(q), which is denoted by

H̃1(q). One direct way is to represent the inverse trans-
fer matrix in a state-space form with order n. However,
one drawback of such a way is that, when the number of
transmission zeros is less than n, unknown poles will be
included in H̃1(q) apart from those zeros of H1(q). To
this end, the inverse transfer matrix is represented in
terms of an MFD form rather than the state-space form.

When Di is strictly tall, the numerator polynomial ma-
trix Ni(q) is generically right coprime, namely it has
no transmission zeros. In such a case, the left inverse of
Hi(q) does not possess any poles. To make it more rig-
orous, we make the following assumption:

A5. Hi(q) has no transmission zeros for i ∈ {1, 2}.

Under Assumption A5 and by rational matrix theory
[12], we can always find a polynomial matrix which is
the left-inverse of Hi(q).

Lemma 2 Suppose that Assumptions A2-A3 and A5
hold. Then, for any positive integer K ≥ 2n, there exists
an m× p polynomial matrix Ei(q) of degree K such that
Ei(q)Hi(q) = I.

PROOF. By Assumptions A2-A3, there exists a ma-
trix fraction description Hi(q) = L−1

i (q)Ni(q), where
deg [det (Li(q))] = n and Ni(q) is column reduced with
its column degrees being summed up to n. Assumption
A5 implies that Ni(q) is right coprime. Since Ni(q) is
right coprime and column reduced, for any positive in-
teger K0 ≥ n, there exists a polynomial matrix Ñi(q)

of degree K0 such that Ñi(q)Ni(q) = I [10, Lemma 1].

Therefore, the polynomial matrix Ei(q) = Ñi(q)Li(q),
with its degree being larger than or equal to 2n, is a left
inverse of Hi(q).

By Lemma 2, there exists a polynomial matrix E1(q) of
degree 2n such that

s(k) = E1(q) (y1(k)− w1(k)) .

Substituting the above equation in to the second channel
yields that

y2(k) = H2(q)E1(q) (y1(k)− w1(k)) + w2(k). (9)

Note that H2(q)E1(q) in the above equation may not be
a proper transfer matrix, so it may not be able to be rep-
resented in a regular (non-descriptor) state-space form.

SubstitutingH2(q) =
Q2(q)
p2(q)

into equation (9) yields that

y2(k) =
Q2(q)

p2(q)
E1(q) (y1(k)− w1(k)) + w2(k),

or p2(q) (y2(k)− w2(k)) = Q2(q)E1(q) (y1(k)− w1(k)) ,
(10)

where p2(q) has degree n and Q2(q)E1(q) has degree
3n. Let p2 be the coefficient vector of p2(q) and Ē1 the
stacked matrix coefficients of Q2(q)E1(q). The matrix
form of (10) can then be written as

[
−Y 1

τ+1,3n+1,N +W 1
τ+1,3n+1,N

Y 2
τ+1,n+1,N −W 2

τ+1,n+1,N

]T [
Ē1

p2 ⊗ I

]
= 0,

(11)
where τ is a positive time index. In order to remove
the noise effect in the above equation, we apply the
instrumental-variable method [16] as follows:

1

N

[
Y 1
1,τ,N

Y 2
1,τ,N

][
−Y 1

τ+1,3n+1,N +W 1
τ+1,3n+1,N

Y 2
τ+1,n+1,N −W 2

τ+1,n+1,N

]T

×

[
Ē1

p2 ⊗ I

]
= 0,

(12)

where the instrumental variable

[
Y 1
1,τ,N

Y 2
1,τ,N

]
and the mea-

surement noise

[
W 1

τ+1,3n+1,N

W 2
τ+1,n+1,N

]
are uncorrelated, i.e.,

lim
N→∞

1

N

[
Y 1
1,τ,N

Y 2
1,τ,N

][
W 1

τ+1,3n+1,N

W 2
τ+1,n+1,N

]T
= 0.

Then, we have that

lim
N→∞

1

N

[
Y 1
1,τ,N

Y 2
1,τ,N

][
−Y 1

τ+1,3n+1,N

Y 2
τ+1,n+1,N

]T [
Ē1

p2 ⊗ I

]
= 0.

(13)
Let the QR factorization be given:

1

N

[
Y 1
1,τ,N

Y 2
1,τ,N

][
−Y 1

τ+1,3n+1,N

Y 2
τ+1,n+1,N

]T
= U

[
R11,N R12,N

0 R22,N

]
,

(14)
where U matrix consisting of (4n + 2)p orthonor-
mal column vectors, R11,N ∈ R(3n+1)p×(3n+1)p,
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R22,N ∈ R(n+1)p×(n+1)p. Substituting equation (14)
into (13) yields that

lim
N→∞

R22,N (p2 ⊗ I) = 0. (15)

Since p2(q) is a monic polynomial of degree n, the coef-
ficient vector p2 contains n unknown variables.

Next, we shall analyze the identifiability of p2(q) in the
errors-in-variables model (10). The concept of (dual)
minimal basis of a polynomial matrix [6] will used in the
following lemma.

Lemma 3 Consider the two-channel system model in
(3) without measurement noise. Suppose that the follow-
ing assumptions hold:

(1) Assumptions A1-A3 and A5 hold;
(2) There exists an integer index i ∈ {1, 2, · · · , p} such

that the degrees of the minimal polynomial basis of[
G1(q)

G2,i(q)

]
, with G2,i(q) being the i-th row vector of

G2(q), are summed up to 2n, and the greatest degree

of the dual minimal basis of

[
G1(q)

G2,i(q)

]
is smaller

than or equal to n.

Let Si ∈ R(n+1)×(n+1)p be a selection matrix defined as

Si = I(n+1)×(n+1) ⊗ ei,

where ei is the i-th row of a p× p identity matrix. Then
we have that

rank

[
Y 1
τ+1,3n+1,N

SiY
2
τ+1,n+1,N

]
= rank

[
Y 1
τ+1,3n+1,N

]
+ n.

Proof of this lemma is given in Appendix B.

Remark 1 The result of Lemma 3 indicates that there
exist n linearly independent equations for estimating
p2(q). Let

(
Y 2
τ+1,n+1,N/Y 1

τ+1,3n+1,N

)
denote the projec-

tion of Y 2
τ+1,n+1,N on the orthogonal complement to the

row space of Y 1
τ+1,3n+1,N . Under noise-free measure-

ments, it can be derived from (11) that(
pT
2 ⊗ I

) (
Y 2
τ+1,n+1,N/Y 1

τ+1,3n+1,N

)
= 0.

It then follows that

pT
2 Si

(
Y 2
τ+1,n+1,N/Y 1

τ+1,3n+1,N

)
= 0 for i = 1, · · · , p.

Based on the result of Lemma 3, there exists an integer i ∈
{1, · · · , p} such that thematrixSi

(
Y 2
τ+1,n+1,N/Y 1

τ+1,3n+1,N

)

has rank n. Since p2 contains only n variables, it can
be uniquely determined from (11) without the noise ef-
fect. However, in the presence of measurement noise, by
properly choosing the value of τ , the instrumental vari-

able

[
Y 1
1,τ,N

Y 2
1,τ,N

]
in (13) can be of high rank such that it

does not destroy the rank properties of

[
Y 1
τ+1,3n+1,N

SiY
2
τ+1,n+1,N

]
shown in Lemma 3.

Remark 2 In the proof of Lemma 1, we can find that
the polynomial matrix, which consists of the first p + 1

rows of the coprime part of

[
G1(q)

G2(q)

]
in (A.3) in Ap-

pendix A, is likely to be irreducible with the degrees of
its minimal polynomial basis being summed up to 2n. In
addition, according to the properties of the dual minimal
basis of a polynomial matrix that are described [6, 12],

the dimension of the dual minimal basis of

[
G1(q)

G2,i(q)

]
is

(p+1−m), and the associated basis degrees are summed
up to 2n. As a result, the condition in Lemma 3 that the
greatest degree of the dual minimal basis is smaller than
or equal to n can easily be satisfied in practical scenarios.

As shown above, in order to identify the first charac-
teristic polynomial p1(q) of the two channel systems,
the second channel systemH2(q) should not possess any
zeros, and vice versa. When the concerned two chan-
nel systems have square transfer matrices, they are very
likely to have transmission zeros, so their corresponding
characteristic polynomials cannot be identified using the
proposed method above. To cope with this problem, we
adopt one more channel and combine it with the orig-
inal two channel systems for identifying characteristic
polynomials. In order to identify the characteristic poly-
nomial of the first channel, the three-channel system is
rewritten as

y1(k) = H1(q)s(k) + w1(k)[
y2(k)

y3(k)

]
︸ ︷︷ ︸

ȳ2(k)

=

[
H2(q)

H3(q)

]
︸ ︷︷ ︸

H̄2(q)

s(k) +

[
w2(k)

w3(k)

]
︸ ︷︷ ︸

w̄2(k)

. (16)

According to the above discussion, if the tall transfer
matrix H̄2(q) in the above system does not have any ze-
ros, then the characteristic polynomial of the first chan-
nel can be identified. Similarly, the other characteristic
polynomials can be estimated using the same approach.

After obtaining all the characteristic polynomials pi(q),
we shall investigate the identification of the numerator
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polynomial matrices Qi(q) in next section.

5 Blind identification of numerator polynomial
matrices

In this section, two methods for identifying the numer-
ator polynomial matrices {Qi(q)}2i=1 will be developed.
The first method requires the associated transfer matri-
ces {Hi(q)}2i=1 to be square and stably invertible. The
second one relaxes this requirement, but requires all the
measurement noises to satisfy Assumption A4 and the
transfer matrices {Hi(q)}2i=1 having no transmission ze-
ros.

5.1 Blind identification of square and stably invertible
transfer matrices

For two scalar FIR systems with a common source signal,
the associated cross-relation equation can be easily con-
structed [22]. However, for the two channel multivariable
systems, due to the fact that the product of two poly-
nomial matrices is not commutable, the so called cross-
relation equation cannot be directly derived. In this sec-
tion, we shall develop a new cross-relation identification
method for the autoregressive MIMO systems.

Denote the state-space representation of the i-th channel
model [30]:

Hi(q) :=

Ai Bi

Ci Di

 . (17)

The corresponding transfer matrix is Hi(q) = Ci(qI −
Ai)

−1Bi + Di. By Assumption A3, Di is a square and
regular matrix. Then, the inverse of Hi(q) can be ex-
pressed as:

H̃i(q) :=

 Ãi B̃i

C̃i D̃i

 =

Ai −BiD
−1
i Ci −BiD

−1
i

D−1
i Ci D−1

i

 .

(18)
It follows that

Hi(q)H̃i(q) = H̃i(q)Hi(q) = I.

To ensure the stability of H̃i(q), we need the following
assumption:

A6. Hi(q) is stably invertible for i = 1, 2, namely Ai −
BiD

−1
i Ci is a stable matrix.

Given the inverse transfer matrix H̃1(q), it can be
derived from the first channel model that s(k) =

H̃1(q) (y1(k)− w1(k)). Substituting it into the second
channel model yields that

y2(k) = H2(q)H̃1(q) (y1(k)− w1(k)) + w2(k). (19)

The above system can be regarded as a multivariable
errors-in-variables system with a noisy input and a noisy
output. Let H21(q) = H2(q)H̃1(q) and

H21(q) : =

A21 B21

C21 D21

 =


A2 B2C̃1 B2D̃1

0 Ã1 B̃1

C2 D2C̃1 D2D̃1

 . (20)

The state-space representation of (19) can be defined as

x21(k + 1) = A21x21(k) +B21(y1(k)− w1(k))

y2(k) = C21x21(k) +D21(y1(k)− w1(k)) + w2(k),
(21)

where A21 ∈ R2n×2n, B21 ∈ R2n×p, C21 ∈ Rp×2n,D21 ∈
Rp×p. The associated data equation for the above system
model is written as

Y 2
1,r,N = OrX1,N +TrY 1

1,r,N −TrW 1
1,r,N +W 2

1,r,N , (22)

where

X1,N =
[
x21(1) x21(2) · · · x21(N)

]
∈ Rn×N ,

Or =


C21

C21A21

...

C21A
r−1
21

 ,

and

Tr =


D21

C21B21 D21

...
. . .

. . .

C21A
r−2
21 B21 · · · C21B21 D21

 .

Remark 3 By Corollary 1, in the absence of measure-
ment noise, Y 1

1,r,N in (22) has full row rank when the

transfer matrices {Hi(q)}2i=1 are square, while it is rank
deficient under tall transfer matrices. In other words, the
input signal y1(k) in (21) lacks persistent excitation when
{Hi(q)}2i=1 are tall transfer matrices. This is the reason
why the presented identification method in this subsec-
tion cannot be applied to the multiple channel systems
with tall transfer matrices.

Next, we shall apply the classical instrumental-variable
technique to deal with the identification of the errors-in-
variables system in (21). Equation (22) can be extended
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to the following form:[
Y 2
1,r,N

Y 2
r+1,r,N

]
=

[
OrX1,N

OrXr+1,N

]

+

[
Tr
(
Y 1
1,r,N −W 1

1,r,N

)
Tr
(
Y 1
r+1,r,N −W 1

r+1,r,N

) ]+ [ W 2
1,r,N

W 2
r+1,r,N

]

Post-multiplying the second equation above by
[
Y 1,T
1,r,N Y 2,T

1,r,N

]
yields that

1

N
Y 2
r+1,r,N

[
Y 1,T
1,r,N Y 2,T

1,r,N

]
=

1

N
OrXr+1,N

[
Y 1,T
1,r,N Y 2,T

1,r,N

]
+

1

N
TrY 1

r+1,r,N

[
Y 1,T
1,r,N Y 2,T

1,r,N

]
− 1

N
TrW 1

r+1,r,N

[
Y 1,T
1,r,N Y 2,T

1,r,N

]
+

1

N
W 2

r+1,r,N

[
Y 1,T
1,r,N Y 2,T

1,r,N

]
.

(23)

For any τ > 0, w1(k+ τ) and w2(k+ τ) are independent
of y2(k) and y1(k). Thus, the last two terms in the above
equation approach zero as N → ∞. Let the following
QR factorization be given:[
Y 1
r+1,r,NY 1,T

1,r,N Y 1
r+1,r,NY 2,T

1,r,N

Y 2
r+1,r,NY 1,T

1,r,N Y 2
r+1,r,NY 2,T

1,r,N

]
=

[
L11,N 0

L21,N L22,N

][
V1,N

V2,N

]
.

(24)
It follows that

lim
N→∞

1√
N

L22,N = lim
N→∞

1√
N

OrXr+1,N

[
Y 1,T
1,r,N Y 2,T

1,r,N

]
V T
2,N .

(25)
The following result can be derived subsequently.

Theorem 2 Assume that Assumptions A1-A3 and A6
hold. In view of the QR factorization in (24), if the

matrix limN→∞
1√
N
Xr+1,N

[
Y 1,T
1,r,N Y 2,T

1,r,N

]
V T
2,N has full

row rank, then

range

(
lim

N→∞

1√
N

L22,N

)
= range (Or) . (26)

Remark 4 The regularity of the matrix

lim
N→∞

1√
N

Xr+1,N

[
Y 1,T
1,r,N Y 2,T

1,r,N

]
V T
2,N

was discussed in [5, 21], which shows that the regulari-
ty condition is easy to be satisfied when system model in
(21) is minimal and the corresponding system input is
persistently exciting. By Lemma 1 and Corollary 1, it can

be established that rank (L22,N ) = 2n under square trans-
fer matrices, while rank (L22,N ) = n under tall transfer
matrices. In equation (26), Or is supposed to have rank
2n. Therefore, the range of Or can be determined under
square transfer matrices rather than tall transfer matri-
ces.

From Theorem 2, we can see that the column space of
Or can be numerically computed, so the matrices A21

and C21 can be estimated using the classic subspace i-
dentification method [21]. Next, we shall estimate the
matrices B21 and D21 based on the system model (21)
with available A21 and C21. In view of the data equation
in (22), the following equation can be derived:

y2(k + l) = Al
21x21(k) +D21 (y1(k + l)− w1(k + l))+

l∑
i=1

C21A
i−1
21 B21 (y1(k + l − i)− w1(k + l − i)) + w2(k + l).

(27)

By Assumptions A3 and A6, the matrix A21 is stable;
therefore, the first term Al

21x21(k) is negligible if l is
large enough. Then, equation (27) can be accurately ap-
proximated as

y2(k + l)− w2(k + l) ∼= Γl


y1(k)− w1(k)

...

y1(k + l)− w1(k + l)

 ,

(28)

where Γl =
[
C21A

l−1
21 B21 · · · C21B21 D21

]
. The ma-

trix form of the above equation is written as

Y 2
l+1,1,N −W 2

l+1,1,N
∼= Γl

(
Y 1
1,l+1,N −W 1

1,l+1,N

)
. (29)

Applying the classic instrumental-variable technique
yields that

lim
N→∞

1

N
Y 2
2l+2,1,NY 1,T

1,l+1,N︸ ︷︷ ︸
RY2Y1

∼= Γl lim
N→∞

1

N
Y 1
l+2,l+1,NY 1,T

1,l+1,N︸ ︷︷ ︸
RY1Y1

.

(30)

By Corollary 1, without noise effect, Y 1
l+2,l+1,N and

Y 1
1,l+1,N are of full row rank under square transfer ma-

trices; hence, RY1Y1 in the above equation is a regular
matrix. As a result, Γl can be determined from (30).
Partition the matrix RY1Y1 into block rows as

RY1Y1 =


R̄1

...

R̄l+1

 .
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The vectorization form of equation (30) is written as

vec (RY2Y1) =
[∑l

i=1 R̄
T
i ⊗

(
C21A

l−i
21

)
R̄T

l+1 ⊗ I
]

×

[
vec (B21)

vec (D21)

]
.

(31)

Then,B21 andD21 can be estimated accordingly by solv-
ing the above equation.

Using the above developed algorithm, the system
matrices {A21, B21, C21, D21} corresponding to the

transfer matrix H21(q) = H2(q)H̃1(q) can be esti-
mated accordingly. Similarly, the system matrices
{A12, B12, C12, D12} corresponding to the transfer ma-

trix G12(q) = H1(q)H̃2(q) can be estimated as well.
Next, we will try to recover the transfer matrices H1(q)
and H2(q) from the estimated H12(q) and H21(q).

According to the definitions of H12(q) and H21(q), the
following relations can be derived:[

I −H12(q)

−H21(q) I

][
H1(q)

H2(q)

]
= 0. (32)

Pre-multiplying the left-hand side of (32) by the matrix[
I 0

H21(q) I

]
yields that

[
I 0

H21(q) I

][
I −H12(q)

−H21(q) I

][
H1(q)

H2(q)

]

=

[
I −H12(q)

0 I −H21(q)H12(q)

][
H1(q)

H2(q)

]
= 0.

(33)

When the transfer matrix Hi(q) is square, we have that

H21(q)H12(q) = H2(q)H̃1(q)H1(q)H̃2(q) = I.

Therefore, the second equation of (33) is redundant. It
indicates that it is unnecessary to estimateH12(q). Then,
equation (32) can be simplified into

[
−H21(q) I

] [H1(q)

H2(q)

]
= 0. (34)

Substituting Hi(q) =
Qi(q)
pi(q)

into (34) yields that

[
−H21(q) I

] [Q1(q)p2(q)

Q2(q)p1(q)

]
= 0. (35)

By Theorem 1, the augmented polynomial matrix[
Q1(q)p2(q)

Q2(q)p1(q)

]
in the above equation is not right co-

prime; hence, it is not blindly identifiable.

However, once {pi(q)}2i=1 have been estimated using the
method in Section 4, equation (35) can be recasted as

[
−Hji(q)pj(q) pi(q)I

] [ Qi(q)

Qj(q)

]
= 0, (36)

where Qi(q) and Qj(q) are unknown polynomial matri-
ces which are to be estimated. In the above equation, in

order to determine

[
Qi(q)

Qj(q)

]
up to a matrix ambiguity,

it requires

[
Qi(q)

Qj(q)

]
to be right coprime and column re-

duced and all its column degrees should be identical [7,
Chapter 3]. By Assumption A3, i.e. Di and Dj have full
column rank, and in view of the expression of Qi(q) in

(4), we can obtain that

[
Qi(q)

Qj(q)

]
is column reduced. In

addition, by the assumption that the set consisting of
all the zeros and poles of Hi(q) does not intersect with

that of Hj(q), it can be verified that

[
Qi(q)

Qj(q)

]
is right

coprime. Therefore, if

[
Qi(q)

Qj(q)

]
has identical column de-

grees, it can be blindly identified from equation (36).

The matrix form of (36) can be written as

[
−T ji

2n+1P
j
n+1 Pi

n+1

] [ Q̄i

Q̄j

]
= 0, (37)

where

T ji
2n+1 =


Dji

CjiBji Dji

...
. . .

. . .

CjiA
2n−1
ji Bji · · · CjiBji Dji

 ,
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Pi
n+1 =



I

pi1I
. . .

...
. . . I

pinI pi1I

. . .
...

pinI


︸ ︷︷ ︸
n+1 block columns

with {pij}nj=1 being the coefficients of pi(q), and Q̄i =
Qi

0

...

Qi
n

 with {Qi
j}nj=0 being the matrix coefficients of

Qi(q). Then, a nontrivial solution of

[
Q̄i

Q̄j

]
can be ob-

tained by taking the singular value decomposition of[
−T ji

2n+1P
j
2n+1 Pi

2n+1

]
.

For ease of reference, the blind identification of three
channel systems with square and stably invertible trans-
fer matrices is summarized in Algorithm 1. The objec-
tive of Algorithm 1 is to estimate the system matri-
ces {Ai, Bi, Ci, Di}3i=1 using only the system outputs
{yi(k)}3i=1. The first four steps are carried out for esti-

mating the transfer functions {Hi(q) = Qi(q)
pi(q)

}3i=1: the

first two steps are devoted to estimating the character-
istic polynomials {pi(q)}3i=1 while the third and fourth
steps are designed for estimating the numerator polyno-
mial matrices {Qi(q)}3i=1. In the third step, the hybrid
transfer function Hi,j(q) is estimated through identify-
ing its corresponding system matrices of the state-space
system model in (21). To identify the system matrices
in (21), we use the subspace identification method de-
scribed in equations (22)-(31). In the last step, the sys-
tem matrices {Ai, Bi, Ci, Di}3i=1 are estimated using the
classic deterministic realization method ”Ho-Kalman’s
method” described in [13, 21]:

(1) Expand the transfer function of the i-th channel
system as

Qi(q)

pi(q)
= M i

0 +M i
1q

−1 +M i
2q

−2 + · · · ;

(2) Form the block Hankel matrix

M =


M i

1 M i
2 M i

3 · · ·
M i

2 M i
3 M i

4 · · ·
M i

3 M i
4 M i

5 · · ·
...

...
...

 ;

(3) Compute the extended observability and controlla-
bility matrices by taking the singular value decom-
position of the above block Hankel matrix;

(4) Estimate the system matrices of the i-th channel
system by exploiting the shifting structures of the
extended observability/controllability matrices.

Algorithm 1 Blind identification of three channel systems

with square transfer matrices

1) Recast the three channel systems into the form of (16).

2) Estimate characteristic polynomials {pi(q)}3i=1 using

equation (15) derived in Section 4.

3) Identify the hybrid transfer matrices Hij(q) of

the system in (21) for i ̸= j ∈ {1, 2, 3}.
4) Form equation (37) and estimate matrix coefficients

of {Qi(q)}3i=1.

5) Estimate the system matrices {Ai, Bi, Ci, Di}3i=1 using

the standard Ho-Kalman method.

The implementation of Algorithm 1 requires at least
three channel systems. The main reason is that, based
on only two channel outputs, we are not able to estimate
the denominator parts of their square transfer matrices.
It is noteworthy that Algorithm 1 can be applied to the
case that wi(k) is spatially correlated but temporally
uncorrelated.

5.2 Blind identification of tall transfer matrices having
no transmission zeros

Under tall transfer matrices, the characteristic polyno-
mials can be identified by the method in Section 4. Here-
in, we only consider the estimation of the numerator
polynomial matrices {Qi(q)}. The presented algorithm
in this subsection is called the generalized subspace i-
dentification method.

Analogous to (3), the two channel systems with mea-
surement noise can be written as[

y1(k)

y2(k)

]
=

[
Q1(q)p2(q)

Q2(q)p1(q)

]
︸ ︷︷ ︸

G(q)

s(k)

p1(q)p2(q)︸ ︷︷ ︸
u(k)

+

[
w1(k)

w2(k)

]
.

(38)
The matrix form of the above equation is written as[

Y 1
2n+1,r,N

Y 2
2n+1,r,N

]
︸ ︷︷ ︸

Y2n+1,r,N

=

[
G1
r

G2
r

]
︸ ︷︷ ︸

Gr

U1,r,N +

[
W 1

2n+1,r,N

W 2
2n+1,r,N

]
︸ ︷︷ ︸

W2n+1,r,N

, (39)

where Gi
r for i ∈ {1, 2} is defined in (7).
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By Assumption A4, it can be derived that

lim
N→∞

Y2n+1,r,NY T
2n+1,r,N

N︸ ︷︷ ︸
RY Y

= Gr lim
N→∞

U1,r,NUT
1,r,N

N︸ ︷︷ ︸
RUU

GT
r +σ2I.

(40)
By Assumption A1, it can be established that RUU is a
regular matrix. Furthermore, it can be derived that

range
(
RY Y − σ2I

)
= range (Gr) .

According to Lemma 1, the matrix Gr is rank deficient,
so is RY Y − σ2I. Let the eigenvalue decomposition of
RY Y be given:

RY Y =
[
Us Un

] [Σ+ σ2I

σ2I

][
UT
s

UT
n

]
, (41)

where Us and Un denote the signal and noise subspace of
RY Y , respectively. By Lemma 1, the matrix Un consists
of nl = 2rp−(rm+2n) independent orthonormal column
vectors. Note that nl is always non-negative since Gr ∈
R2rp×(2n+r)m is a tall matrix. Let Un = [ϕ1 · · ·ϕnl

] with
ϕi ∈ R2rp the i-th column vector. Then it holds that

ϕT
i Gr = 0 for i = 1, · · · , nl. (42)

Partition ϕi as ϕ
T
i =

[
ϕi,1 · · · ϕi,2r

]
with ϕi,j ∈ R1×p

for j = 1, · · · , 2r. Since Gr is a stacked block Toeplitz
matrix, the above equation is equivalent to the following
polynomial equation:

[
Φi,1(q) Φi,2(q)

] [G1(q)

G2(q)

]
= 0, (43)

where Φi,1(q) = ϕi,1 + ϕi,2q + · · · + ϕi,rq
r−1, Φi,2(q) =

ϕi,r+1 + ϕi,r+2q + · · ·+ ϕi,2rq
r−1, and G1(q) and G2(q)

are defined in (3). Stacking all equations of (43) yields
that [

Φ1(q) Φ2(q)
] [G1(q)

G2(q)

]
= 0, (44)

where Φi(q) =
[
ΦT

i,1(q) · · ·ΦT
i,nl

(q)
]T

for i = 1, 2.

When {pi(q)}2i=1 are available, substituting G(q) shown
in (38) into equation (44) yields that

[
Φ1(q)p2(q) Φ2(q)p1(q)

] [Q1(q)

Q2(q)

]
= 0. (45)

Analogous to equation (36),

[
Q1(q)

Q2(q)

]
in the above e-

quation can be identified up to a matrix ambiguity if the

following assumptions hold:

(1) Assumption A3 holds;
(2) The set consisting of all the zeros and poles ofH1(q)

does not intersect with that of H2(q);

(3)

[
Q1(q)

Q2(q)

]
has identical column degrees.

The matrix form of (45) can be written as

[
Φ̄1

2n+1P2
n+1 Φ̄2

2n+1P1
n+1

] [ Q̄1

Q̄2

]
= 0, (46)

where

Φ̄i
2n+1 =



Φi
1

Φi
2

. . .

...
. . . Φi

1

Φi
r Φi

2

. . .
...

Φi
r


︸ ︷︷ ︸

2n+1 block columns

with {Φi
j}rj=1 being the matrix coefficients of Φi(q),

and Pi
n+1 and Q̄i are the same as in (37). From (46),

we can numerically obtain a nontrivial solution of[
Q̄1

Q̄2

]
by taking the singular value decomposition of[

Φ̄1
2n+1P2

n+1 Φ̄2
2n+1P1

n+1

]
.

For ease of reference, the blind identification of two chan-
nel systems with tall transfer matrices is summarized in
Algorithm 2. We estimate the associated transfer matri-
ces {Hi(q)}2i=1, followed by estimating the system ma-
trices {Ai, Bi, Ci, Di}2i=1. The first step aims to estimate
the denominator parts of the associated transfer matri-
ces, while the second and third steps are devoted to esti-
mating the numerator parts. The last step refers to the
realization of the state-space system models from their
transfer matrices, which is accomplished using the ”Ho-
Kalman’s method” described in [13, 21].

Comparing Algorithm 1 with Algorithm 2, we can find
that equations (43) and (35) have similar forms, and e-
quations (45) and (36) have similar forms as well. It is
remarked that Algorithm 2 is developed based on As-
sumption A4, i.e. the covariance matrix of wi(k) is a s-
caled identity matrix. Under Assumption A4, steps 2-3
in Algorithm 2 can also be applied to identify two square
transfer matrices.
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Algorithm 2 Blind identification of two channel systems

with tall transfer matrices

1) Estimate characteristic polynomials {pi(q)}2i=1 using

equation (15) derived in Section 4.

2) Derive equation (43) using the method shown

in equations (39)-(42).

3) Form equation (46) and estimate coefficient matrices

of {Qi(q)}2i=1.

4) Estimate the system matrices {Ai, Bi, Ci, Di}2i=1 using

the standard Ho-Kalman method.

6 Numerical simulations

In this section, two numerical simulation examples are
carried out to validate the proposed blind identification
algorithms for multiple channel systems sharing a com-
mon source signal.

The proposed algorithms aim to identify the system ma-
trices of the concerned state-space models up to a ma-
trix ambiguity. Instead of directly measuring the esti-
mation error of the system matrices, we assess the es-
timation performance of the associated transfer matri-
ces. Denote by {Âi, B̂i, Ĉi, D̂i} the estimated coefficien-

t matrices of the i-th channel and Ĥi(q) = Q̂i(q)
p̂i(q)

=

Ĉi(qI−Âi)
−1B̂i+D̂i the corresponding transfer matrix.

Here, we adopt the following normalized mean-square
error to assess the identification performance of the nu-
merator parts {Qi(q)}Li=1:

nMSEN =
1

K

K∑
j=1

minΓ ∥Q̄− Q̂jΓ∥2F
∥Q̄∥2F

, (47)

where Γ denotes the matrix ambiguity, Q̄ stands for
a block vector stacked by the matrix coefficients of
{Qi(q)}Li=1, Q̂

j represents the estimate of Q̄ in the j-th
experimental trial, and K is the total number of Monte-
Carlo trials. Similarly, the identification performance of
characteristic polynomials is evaluated by

nMSED =
1

K

K∑
j=1

∥p̄− p̂j∥22
∥p̄∥22

, (48)

where p̄ denotes a vector stacked by the coefficients of all
the characteristic polynomials and p̂j is the estimate in
the j-th experimental trial. In the simulation, the com-
mon system input is generated as a white-noise signal
or a sum-of-sine signal. To show the identification per-
formance against noise effect, the signal-to-noise ratio

(SNR) is defined as

SNR = 10 log

(∑L,N
i=1,k=1 ∥yi(k)− wi(k)∥22∑L,N

i=1,k=1 ∥wi(k)∥22

)
. (49)

Example 1 Two channel systems with tall transfer ma-
trices are considered. Their system matrices are shown
as follows:

A1 =

[
−0.6537 0.1005

1.0000 0

]
, B1 =

[
1.4525 0.6578

0.6726 0.2015

]
,

C1 =


−0.0082 0.0885

−0.9403 −1.0258

0.1616 −2.0666

 , D1 =


−0.0810 −0.3231

−0.1936 1.7654

−1.0544 0.3209

 ,

A2 =

[
−1.0060 −0.2162

1.0000 0

]
, B2 =

[
−0.1088 −0.4299

−1.0141 −0.9198

]
,

C2 =


−0.2591 0.7364

−1.7646 0.0137

−0.3099 0.6287

 , D2 =


−1.2215 −0.3806

−0.5776 2.0738

−2.9127 −1.2171

 .

(50)

It can be verified that the above two transfer matri-
ces possess no transmission zeros and have no common
poles.

Fig. 1 and Fig. 2 show the identification performance of
both numerator matrices and characteristic polynomial-
s. The nMSE curves in Fig. 1 are plotted with respect to
SNR. The length of adopted output data is set to 8000
and the number of Monte-carlo trials is set to K = 50.
We can see that the nMSE values for both the numerator
matrices and characteristic polynomials decrease along
with the SNR, indicating that the identification perfor-
mance can be improved by increasing the SNR. The n-
MSE values of the characteristic polynomials are slightly
smaller than those of numerator matrices, because the
identification of the numerator matrices relies on the i-
dentification results of the characteristic polynomials. In
addition, the nMSE values corresponding to the white-
noise input are slightly smaller than those correspond-
ing to the sum-of-sine input signal. This is because the
frequency component of the white-noise input is much
richer than the sum-of-sine input signal. Fig. 2 shows the
identification performance against the number of obser-
vation samples, where the SNR is set to 20 dB. We can
observe that the nMSE values decrease along with the
number of observation samples.

Example 2 Three channel systems with square trans-
fer matrices are considered. Their system matrices are

12
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Fig. 1. Example 1: identification performance of Algorithm
2 against SNR. Blue curves correspond to the sum-of-sine
input signal, while red ones correspond to the white noise
input. Solid-star curves correspond to numerator matrices,
while solid-diamond ones correspond to characteristic poly-
nomials.

2000 3000 4000 5000 6000 7000 8000 9000 10000
−48

−46

−44

−42

−40

−38

−36

−34

−32

−30

−28

Number of observation samples

nM
S

E
 (

dB
)

 

 
nMSE

N
 with sum−of−sine input signal

nMSE
D

 with sum−of−sine input signal

nMSE
N

 with white input signal

nMSE
D

 with white input signal

Fig. 2. Example 1: identification performance of Algorithm
2 against the number of observation samples. Blue curves
correspond to the sum-of-sine input signal, while red ones
correspond to the white noise input. Solid-star curves corre-
spond to numerator matrices, while solid-diamond ones cor-
respond to characteristic polynomials.

shown as follows:

A1 =

[
1.0328 −0.2000

1.0000 0

]
, B1 =

[
0.4692 −0.4205

0.5282 0.1416

]
,

C1 =

[
0.2957 −0.1632

−0.6861 1.0004

]
, D1 =

[
−1.1490 −0.5662

−0.6648 −1.6503

]
,

A2 =

[
−1.2533 −0.3927

1.0000 0

]
, B2 =

[
0.7369 0.2112

0.7080 −0.3047

]
,

C2 =

[
1.8618 0.2300

1.9953 −0.0621

]
, D2 =

[
−1.5296 −2.9723

−2.2695 0.8078

]
,

A3 =

[
1.3981 −0.4872

1.0000 0

]
, B3 =

[
1.4372 −0.8803

−0.5827 0.0493

]
,

C3 =

[
0.3931 −0.2496

0.4023 −0.1164

]
, D3 =

[
−1.5417 −1.4544

−0.3472 −0.0452

]
.

In the above setting, the first two systems are stably
invertible while the third one is not. It can be verified
that the above three transfer matrices have no common
zeros and poles.

In this example, the characteristic polynomial of each
channel can be determined by carrying out steps 1-2 of
Algorithm 1. Since the first two systems are stably in-
vertible, their numerator polynomial matrices can then
be identified by steps 3-4 of Algorithm 1 or steps 2-
3 of Algorithm 2. Due to the fact that the third sys-
tem is non-invertible, its numerator polynomial matrix
Q3(q) cannot be identified by Algorithm 1. However, s-

ince

[
Q2(q)

Q3(q)

]
is right coprime, Q3(q) can then be iden-

tified by carrying out steps 2-3 of Algorithm 2.

Fig. 3 shows the identification performance of the first
two systems using Algorithm 1, while Fig. 4 shows the
identification performance of the last two systems using
Algorithm 2. In Algorithm 1, the value of l in (27) is
set to 100. Analogous to Example 1, the identification
accuracy improves along with the SNR. In addition, the
performance associated with a sum-of-sine signal input
is slightly worse than that with a white-noise input.

Since the numerator polynomial matrices of the first two
systems {Qi(q)}2i=1 can be identified using either Algo-
rithm 1 or Algorithm 2, the identification performances
of these two algorithms are compared. From Fig. 5, we
can find that the identification performance of Algorith-
m 1 is slightly worse than that of Algorithm 2, which
might be caused by the approximation error introduced
by neglecting the first term on the right-hand side of
(27).

7 Conclusion

In this paper, we have presented a comprehensive s-
tudy of the blind identification of multivariable systems
in state-space form. Identification algorithms have been
developed for systems with invertible or non-invertible,
square or tall transfer matrices. The present work is chal-
lenging in the following aspects. Different from the blind
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Fig. 3. Example 2: identification performance of the first t-
wo channels using Algorithm 1. Blue curves correspond to
the sum-of-sine input signal, while red ones correspond to
the white noise input. Solid-star curves correspond to nu-
merator matrices, while solid-diamond ones correspond to
characteristic polynomials.
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Fig. 4. Example 2: identification performance of the last t-
wo channels using Algorithm 2. Blue curves correspond to
the sum-of-sine input signal, while red ones correspond to
the white noise input. Solid-star curves correspond to nu-
merator matrices, while solid-diamond ones correspond to
characteristic polynomials.

system identification with scalar transfer functions, the
product of two multivariate transfer matrices is non-
commutable. Hence, the cross-relation equation between
different channels cannot be derived immediately. Unlike
the traditional blind identification of FIR systems, the
rational transfer matrices of the concerned systems have
coupled poles and zeros, which is difficult to deal with.
For the proposed identification methods, their blind i-
dentifiability conditions have been investigated. In addi-
tion, two numerical simulation examples have been pro-
vided to validate the presented identification algorithms.

10 20 30 40 50 60 70 80 90 100
−120

−100

−80

−60

−40

−20

0

SNR (dB)

nM
S

E
 (

dB
)

 

 
Algorithm 1
Algorithm 2

Fig. 5. Example 2: comparison of Algorithm 1 and Algorith-
m 2 on identifying the first two systems. The star-blue curve
corresponds to the performance of Algorithm 1, while the
diamond-red curve corresponds to the performance of Algo-
rithm 2.

The derived identification results in this paper do not
rely on any statistical properties of the input signal. In
other words, any persistently exciting deterministic in-
put sequence is acceptable. Due to the fact that both the
input and plants are unavailable, the derived identifica-
tion results possess a wide range of applications, such
as the detection of a common fault sequence of multi-
ple plants, the reconstruction of the object image from
multiple sensed images, and so on.

A Proof of Lemma 1

According to the generalized resultant matrix proper-
ties in [14] and Lemma 1 in [7, Chapter 3.3.2], it can be
established that rank(Gr) = rm + n̄, where n̄ denotes
the minimal order (sum of the degrees of minimal poly-
nomial basis) of G(q). Thus, to obtain the results in the
lemma, it is sufficient to prove that n̄ = 2n.

In this proof, we shall use following facts [6, 12]:

(1) The polynomial matrix G(q) in (3) is irreducible if
rank [G(q)] = m for all q ∈ C;

(2) If G(q) is irreducible, then the minimal order of
G(q) equals the maximum degree of all m×m mi-
nors of G(q).

By Assumptions A2 and A3, there exists an MFD of
the i-th channel system Hi(q) = Ni(q)R

−1
i (q) such that

deg [det(Ri(q))] = n,

[
Ni(q)

Ri(q)

]
is irreducible and the

maximum degree of the m×m minors of Ni(q) is n.

Since Ni(q)R
−1
i (q) = Qi(q)(pi(q)I)

−1, the polynomial
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matrix G(q) in (3) can be rewritten as

G(q) =

[
G1(q)

G2(q)

]
=

[
N1(q)R

−1
1 (q)p1(q)p2(q)

N2(q)R
−1
2 (q)p1(q)p2(q)

]
.

(A.1)
It has that[
det
(
R−1

1 (q)p1(q)p2(q)
)

det
(
R−1

2 (q)p1(q)p2(q)
) ] =

[
p2(q)

p1(q)

]
pm−1
1 (q)pm−1

2 (q).

By the assumption that H1(q) and H2(q) have no com-
mon poles, i.e. p1(q) and p2(q) have no common zeros,

there exist polynomial matrices R̃1(q), R̃2(q) and C̃(q)
such that[

R−1
1 (q)p1(q)p2(q)

R−1
2 (q)p1(q)p2(q)

]
=

[
R̃2(q)

R̃1(q)

]
C̃(q), (A.2)

where det(C̃(q)) = pm−1
1 (q)pm−1

2 (q), det(R̃2(q)) =

p2(q), det(R̃1(q)) = p1(q). Then we have that

G(q) =

[
G1(q)

G2(q)

]
=

[
N1(q)R̃2(q)

N2(q)R̃1(q)

]
C̃(q). (A.3)

Under the assumptions 2)-3) of the lemma, it can be ver-

ified that

[
N1(q)R̃2(q)

N2(q)R̃1(q)

]
has full column rank for any

q ∈ C, so it is the coprime part of G(q). In addition, by
the properties of Ni(q) shown above, we can obtain that

the greatest degree ofm×mminors of eitherN1(q)R̃2(q)

or N2(q)R̃1(q) is 2n. By the assumption 4) of the lem-
ma, it can be established that the greatest degree of all

m × m minors of

[
N1(q)R̃2(q)

N2(q)R̃1(q)

]
is equal to that of ei-

ther N1(q)R̃2(q) or N2(q)R̃1(q). As a consequence, the

minimum order of

[
G1(q)

G2(q)

]
is 2n. So far, it has been

proven that rank(Gr) = rm+ 2n.

The pseudo source signal u(k) in (3) is considered as an
output of s(k) by linear filtering. By Assumption A1,
i.e. s(k) is persistently exciting, it can be established
that u(k) is persistently exciting as well [16]; hence, the
matrix U1,r,N in (7) has full row rank. We can obtain
from equation (7) that

rank (Y2n+1,r,N ) = rank (Gr) = rm+ 2n.

Therefore, the lemma is proven.

B Proof to Lemma 3

As shown in the proof of Lemma 1, the pseudo input
u(k) is persistently exciting. Without noise effect, the

rank of

[
Y 1
τ+1,3n+1,N

SiY
2
τ+1,n+1,N

]
is therefore equal to that of

G1,2
3n+1,n+1 =

 G1
3n+1

SiG2
n+1 0

 , (B.1)

where G1
3n+1 and G2

n+1 are defined in (7). Note that the

coefficient matrix G1,2
3n+1,n+1 is determined by the poly-

nomial matrix

[
G1(q)

G2,i(q)

]
withG2,i(q) being the i-th row

of G2(q).

By assumption 2) of this lemma, we can obtain that [14]:

rank

[
G1
n+1

SiG2
n+1

]
= (n+ 1)m+ 2n.

Furthermore, following the proof procedure in Section
III of [14] or the rank analysis in [3, Chapter 7.8.2], we
can obtain that

rank
(
G1,2
3n+1,n+1

)
= rank

[
G1
n+1

SiG2
n+1

]
+ 2nm

= (3n+ 1)m+ 2n.

It then follows that

rank

[
Y 1
τ+1,3n+1,N

SiY
2
τ+1,n+1,N

]
= rank

(
G1,2
3n+1,n+1

)
= (3n+ 1)m+ 2n.

By Corollary 1, we have that

rank
(
Y 1
τ+1,3n+1,N

)
= (3n+ 1)m+ n.

As a consequence, we can obtain that

rank

[
Y 1
τ+1,3n+1,N

SiY
2
τ+1,n+1,N

]
= rank

(
Y 1
τ+1,3n+1,N

)
+ n.

The lemma has been proven.
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